Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Yonsei Medical Journal ; : 420-428, 2011.
Article in English | WPRIM | ID: wpr-95678

ABSTRACT

PURPOSE: Dexmedetomidine, a full agonist of alpha2B-adrenoceptors, is used for analgesia and sedation in the intensive care units. Dexmedetomidine produces an initial transient hypertension due to the activation of post-junctional alpha2B-adrenoceptors on vascular smooth muscle cells (SMCs). The aims of this in vitro study were to identify mitogen-activated protein kinase (MAPK) isoforms that are primarily involved in full, alpha2B-adrenoceptor agonist, dexmedetomidine-induced contraction of isolated rat aortic SMCs. MATERIALS AND METHODS: Rat thoracic aortic rings without endothelium were isolated and suspended for isometric tension recording. Cumulative dexmedetomidine (10(-9) to 10(-6) M) dose-response curves were generated in the presence or absence of extracellular signal-regulated kinase (ERK) inhibitor PD 98059, p38 MAPK inhibitor SB 203580, c-Jun NH2-terminal kinase (JNK) inhibitor SP 600125, L-type calcium channel blocker (verapamil and nifedipine), and alpha2-adrenoceptor inhibitor atipamezole. Dexmedetomidine-induced phosphorylation of ERK, JNK, and p38 MAPK in rat aortic SMCs was detected using Western blotting. RESULTS: SP 600125 (10(-6) to 10(-5) M) attenuated dexmedetomidine-evoked contraction in a concentration-dependent manner, whereas PD 98059 had no effect on dexmedetomidine-induced contraction. SB 203580 (10(-5) M) attenuated dexmedetomidine-induced contraction. Dexmedetomidine-evoked contractions were both abolished by atipamezole and attenuated by verapamil and nifedipine. Dexmedetomidine induced phosphorylation of JNK and p38 MAPK in rat aortic SMCs, but did not induce phosphorylation of ERK. CONCLUSION: Dexmedetomidine-induced contraction involves a JNK- and p38 MAPK-mediated pathway downstream of alpha2-adrenoceptor stimulation in rat aortic SMCs. In addition, dexmedetomidine-induced contractions are primarily dependent on calcium influx via L-type calcium channels.


Subject(s)
Animals , Male , Rats , Adrenergic alpha-2 Receptor Agonists/pharmacology , Anthracenes/pharmacology , Aorta/cytology , Dexmedetomidine/pharmacology , Enzyme Inhibitors/pharmacology , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Flavonoids/pharmacology , Imidazoles/pharmacology , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , Muscle Contraction , Muscle, Smooth, Vascular/drug effects , Protein Isoforms/antagonists & inhibitors , Pyridines/pharmacology , Rats, Sprague-Dawley , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
2.
Experimental & Molecular Medicine ; : 38-46, 2010.
Article in English | WPRIM | ID: wpr-104280

ABSTRACT

Cholesterol is one of major components of cell membrane and plays a role in vesicular trafficking and cellular signaling. We investigated the effects of cholesterol on matrix metalloproteinase-2 (MMP-2) activation in human dermal fibroblasts. We found that tissue inhibitor of matrix metalloproteinase-2 (TIMP-2) expression and active form MMP-2 (64 kD) were dose-dependently increased by methyl-beta-cyclodextrin (MbetaCD), a cholesterol depletion agent. In contrast, cholesterol depletion-induced TIMP-2 expression and MMP-2 activation were suppressed by cholesterol repletion. Then we investigated the regulatory mechanism of TIMP-2 expression by cholesterol depletion. We found that the phosphorylation of JNK as well as ERK was significantly increased by cholesterol depletion. Moreover, cholesterol depletion-induced TIMP-2 expression and MMP-2 activation was significantly decreased by MEK inhibitor U0126, and JNK inhibitor SP600125, respectively. While a low dose of recombinant TIMP-2 (100 ng/ml) increased the level of active MMP-2 (64 kD), the high dose of TIMP-2 (> or = 200 ng/ml) decreased the level of active MMP-2 (64 kD). Taken together, we suggest that the induction of TIMP-2 by cholesterol depletion leads to the conversion of proMMP-2 (72 kD) into active MMP-2 (64 kD) in human dermal fibroblasts.


Subject(s)
Child , Child, Preschool , Humans , Anthracenes/pharmacology , Butadienes/pharmacology , Cells, Cultured , Cholesterol/metabolism , Cyclodextrins/pharmacology , Enzyme Inhibitors/pharmacology , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Fibroblasts/drug effects , Immunoblotting , Immunoprecipitation , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , Matrix Metalloproteinase 2/metabolism , Microscopy, Electron, Transmission , Nitriles/pharmacology , Tissue Inhibitor of Metalloproteinase-2/metabolism
3.
Experimental & Molecular Medicine ; : 276-285, 2008.
Article in English | WPRIM | ID: wpr-205429

ABSTRACT

Tropomyosin-related kinase A (TrkA) plays an important role in cell survival, differentiation, and apoptosis in various neuronal and nonneuronal cell types. Here we show that TrkA overexpression by the Tet-On system mimics NGF-mediated activation pathways in the absence of nerve growth factor (NGF) stimulation in U2OS cells. In addition, p53 upregulation upon DNA damage was inhibited by TrkA, and p21 was upregulated by TrkA in a p53-independent manner. TrkA overexpression caused cell death by interrupting cell cycle progression, and TrkA-induced cell death was diminished in the presence of its specific inhibitor GW441756. Interestingly, TrkA-mediated cell death was strongly related to gammaH2AX production and poly (ADP-ribose) polymerase cleavage in the absence of DNA damage inducer. In this study, we also reveal thatgammagammaH2AX production by TrkA is blocked by TrkA kinase inhibitors K-252a and GW441756, and it is also significantly inhibited by JNK inhibitor SP600125. Moreover, reduction of cell viability by TrkA was strongly suppressed by SP600125 treatment, suggesting a critical role of JNK in TrkA-induced cell death. We also found that gammaH2AX and TrkA were colocalized in cytosol in the absence of DNA damage, and the nuclear localization of gammaH2AX induced by DNA damage was partly altered to cytosol by TrkA overexpression. Our results suggest that the abnormal cytosolic accumulation of gammaH2AX is implicated in TrkA-induced cell death in the absence of DNA damage.


Subject(s)
Humans , Anthracenes/pharmacology , Apoptosis/drug effects , Carbazoles/pharmacology , Cell Cycle/drug effects , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p21/biosynthesis , Cytosol/drug effects , DNA Damage/drug effects , Doxorubicin/pharmacology , Histones/metabolism , Indole Alkaloids/pharmacology , MAP Kinase Kinase 4/antagonists & inhibitors , Nerve Growth Factor/antagonists & inhibitors , Phosphorylation/drug effects , Protein Binding , Protein Transport/drug effects , Receptor, trkA/antagonists & inhibitors , Signal Transduction , Transfection
4.
Experimental & Molecular Medicine ; : 699-708, 2008.
Article in English | WPRIM | ID: wpr-167143

ABSTRACT

Expression of protein kinase C-delta (PKC delta) is up-regulated by apoptosis-inducing stimuli. However, very little is known about the signaling pathways that control PKC delta gene transcription. In the present study, we demonstrate that JNK stimulates PKC delta gene expression via c-Jun and ATF2 in response to the anticancer agent doxorubicin (DXR) in mouse lymphocytic leukemia L1210 cells. Luciferase reporter assays showed that DXR-induced activation of the PKC delta promoter was enhanced by ectopic expression of JNK1, c-Jun, or ATF2, whereas it was strongly reduced by expression of dominant negative JNK1 or by treatment with the JNK inhibitor SP600125. Furthermore, point mutations in the core sequence of the c-Jun/ATF2 binding site suppressed DXR-induced activation of the PKC delta promoter. Our results suggest an additional role for a JNK signaling cascade in DXR-induced PKC delta gene expression.


Subject(s)
Animals , Mice , Activating Transcription Factor 2/physiology , Anthracenes/pharmacology , Antibiotics, Antineoplastic/pharmacology , Apoptosis , Cell Line, Tumor , Doxorubicin/pharmacology , Mitogen-Activated Protein Kinase 8/physiology , Mutation , Promoter Regions, Genetic , Protein Kinase C-delta/genetics , Proto-Oncogene Proteins c-jun/antagonists & inhibitors , Signal Transduction/physiology , Transcription, Genetic
5.
Journal of Korean Medical Science ; : 815-819, 2007.
Article in English | WPRIM | ID: wpr-176606

ABSTRACT

The house dust mite (HDM) is considered to be the most common indoor allergen associated with bronchial asthma. In this study, we investigated whether crude extract of the HDM Dermatophagoides farinae could activate human eosinophilic leukemic cells (EoL-1) to induce upregulation of cell-surface adhesion molecules. When EoL-1 cells were incubated with D. farinae extract, expression of intercellular adhesion molecule-1 (ICAM-1) significantly increased on the cell surfaces compared to cells incubated with medium alone. In contrast, surface expression of CD11b and CD49d in EoL-1 cells was not affected by D. farinae extract. In addition, pretreatment of cells with NF- kappaB inhibitor (MG-132) or JNK inhibitor (SP600125) significantly inhibited ICAM-1 expression promoted by HDM extract. However, neither p38 MAP kinase inhibitor nor MEK inhibitor prevented HDM-induced ICAM-1 expression in EoL-1 cells. These results suggest that crude extract of D. farinae induces ICAM-1 expression in EoL-1 cells through signaling pathways involving both NF- kappaB and JNK.


Subject(s)
Animals , Humans , Anthracenes/pharmacology , CD11b Antigen/biosynthesis , Cell Line, Tumor , Cell Membrane/metabolism , Eosinophils/metabolism , Flow Cytometry/methods , Gene Expression Regulation , Integrin alpha4/biosynthesis , Intercellular Adhesion Molecule-1/metabolism , Leukemia/metabolism , Leupeptins/pharmacology , Mitogen-Activated Protein Kinase 8/metabolism , NF-kappa B/metabolism , Pyroglyphidae , p38 Mitogen-Activated Protein Kinases/metabolism
6.
Experimental & Molecular Medicine ; : 408-416, 2006.
Article in English | WPRIM | ID: wpr-53149

ABSTRACT

c-Jun N-terminal kinase (JNK) is activated during hepatic reperfusion, and JNK inhibitors are known to protect other major organs from ischemia-reperfusion (I/R) injury. We attempted to determine the effect of SP600125, a JNK inhibitor, on hepatic I/R injury using a partial ischemia model in mice. Compared to a vehicle-treated group, the SP600125-treated group showed a greater increase in serum ALT levels 24 h after reperfusion with more severe parenchymal destruction and leukocyte infiltration. Similarly, tissue myeloperoxidase and malondialdehyde levels were higher in the SP600125-treated group, and chemokine expression was also higher in the SP600125-treated group. These data, which are contradictory to previous results, indicate that JNK inhibition by SP600125 may be harmful in hepatic I/R injury. Therefore, care must be taken when investigating the therapeutic use of JNK inhibitors in hepatic I/R injury, especially in the context of the effects of JNK inhibition on inflammatory infiltration.


Subject(s)
Mice , Male , Animals , Reperfusion Injury/drug therapy , Oxidative Stress/drug effects , Mice, Inbred C57BL , Matrix Metalloproteinase 9/metabolism , MAP Kinase Kinase 4/antagonists & inhibitors , Liver/cytology , Chemokines/metabolism , Anthracenes/pharmacology
7.
Experimental & Molecular Medicine ; : 428-434, 2006.
Article in English | WPRIM | ID: wpr-53147

ABSTRACT

A terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay was used to determine that apoptosis causes HeLa cell death induced by pseudolaric acid B. The c-Jun N-terminal kinase (JNK) inhibitor SP600125 decreased p53 protein expression during exposure to pseudolaric acid B. SP600125 decreased the phosphorylation of p53 during pseudolaric acid B exposure, indicating that JNK mediates phosphorylation of p53 during the response to pseudolaric acid B. SP600125 reversed pseudolaric acid B-induced down-regulation of phosphorylated extracellular signal-regulated protein kinase (ERK), and protein kinase C (PKC) was activated by pseudolaric acid B, whereas staurosporine, calphostin C, and H7 partly blocked this effect. These results indicate that p53 is partially regulated by JNK in pseudolaric acid B-induced HeLa cell death and that PKC participates in pseudolaric acid B-induced HeLa cell death.


Subject(s)
Humans , Tumor Suppressor Protein p53/metabolism , Protein Kinase C/metabolism , Phosphorylation , JNK Mitogen-Activated Protein Kinases/physiology , HeLa Cells , Diterpenes/pharmacology , DNA Fragmentation/drug effects , Cell Death/drug effects , Anthracenes/pharmacology
8.
Experimental & Molecular Medicine ; : 157-164, 2004.
Article in English | WPRIM | ID: wpr-37853

ABSTRACT

Selenium is a dietary essential trace nutrient with important biological roles. Selenocompounds were reported to induce apoptosis in many types of tumor cells. In this study, we investigated the signaling pathway involved in the selenite-induced apoptosis using Chang liver cells as a non-malignant cell model. The Chang liver cell apoptosis induced by selenite (10 mM) was confirmed by DNA fragmentation and typical apoptotic nuclear changes. Treatment of selenite increased intracellular reactive oxygen species (ROS) level and c-Jun N-terminal kinase1 (JNK1) phosphorylation. The selenite-induced cell death was attenuated by SP600125, a specific inhibitor of JNK, and by dominant negative JNK1 (DN-JNK1). Antioxidants such as glutathione (GSH), N-acetyl cysteine (NAC), curcumin, epigallocatechin gallate (EGCG) and epicatechin (EC) inhibited selenite-induced intracellular ROS elevation and JNK1 phosphorylation. Our results suggest that selenite-induced apoptosis in Chang liver cells was preceded by the ROS generation and JNK1 activation.


Subject(s)
Humans , Acetylcysteine/pharmacology , Anthracenes/pharmacology , Apoptosis/drug effects , Catechin/analogs & derivatives , Cell Line , DNA Fragmentation/drug effects , Free Radical Scavengers/pharmacology , Liver/cytology , Mitogen-Activated Protein Kinase 8/antagonists & inhibitors , Phosphorylation/drug effects , Reactive Oxygen Species/metabolism , Selenium/pharmacology , Signal Transduction/drug effects
9.
Experimental & Molecular Medicine ; : 551-556, 2004.
Article in English | WPRIM | ID: wpr-145925

ABSTRACT

Pseudolaric acid B was isolated from Pseudolarix kaempferi Gordon (Pinaceae) and was evaluated for the anti-cancer effect in HeLa cells. We observed that pseudolaric acid B inhibited cell proliferation and induced apoptosis in a time- and dose-dependent manner. HeLa cells treated with pseudolaric acid B showed typical characteristics of apoptosis including the morphological changes and DNA fragmentation. JNK inhibitor, SP600125, markedly inhibited pseudolaric acid B-induced cell death. In addition, Bcl-2 expression was down-regulated while Bax protein level was up-regulated. Caspase-3 inhibitor, z-DEVD-fmk, partially blocked pseudolaric acid B-induced cell death, and the expression of two classical caspase substrates, PARP and ICAD, were both decreased in a time- dependent manner, indicative of downstream caspase activation.


Subject(s)
Humans , Anthracenes/pharmacology , Apoptosis , Caspases/antagonists & inhibitors , Cell Proliferation/drug effects , Cysteine Proteinase Inhibitors/pharmacology , Diterpenes/pharmacology , Down-Regulation , Enzyme Activation , HeLa Cells , JNK Mitogen-Activated Protein Kinases/drug effects , Oligopeptides/pharmacology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , Signal Transduction/drug effects , Up-Regulation
10.
Indian J Physiol Pharmacol ; 1982 Jul-Sep; 26(3): 183-95
Article in English | IMSEAR | ID: sea-108633

ABSTRACT

Maprotiline, a tetracyclic antidepressant drug, was evaluated for antidepressant and neuroleptic activity. In antidepressant tests, maprotiline antagonized reserpine-induced ptosis in rats but, unlike the tricyclic antidepressants, was found to antagonize methamphetamine stereotypy in rats, to decrease the intensity of L-dopa induced behavioural syndrome in pargyline-pretreated mice and to be ineffective in intensifying the 5-HTP induced behavioural syndrome. In neuroleptic tests, maprotiline was found to, antagonize apomorphine-induced cage climbing behaviour, induce catalepsy, inhibit the CAR and traction response, decrease the spontaneous motor activity and exploratory behaviour, and to potentiate the hypnotic effect of pentobarbitone. Our results indicate that maprotiline exhibits a profile of activity which resembles the neuroleptics and most probably exerts post-synaptic striatal DA receptor blocking activity.


Subject(s)
Animals , Anthracenes/pharmacology , Antipsychotic Agents/pharmacology , Behavior, Animal/drug effects , Clomipramine/pharmacology , Desipramine/pharmacology , Imipramine/pharmacology , Male , Maprotiline/pharmacology , Methamphetamine/pharmacology , Mice , Rats , Reserpine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL